Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

catena-Poly[[silver(I)- μ-pyrazine- $\left.\kappa^{2} N: N^{\prime}\right]$ perchlorate]

Wen-Dong Song, ${ }^{\text {a }}$ Chang-Sheng Gu, ${ }^{a}$ Jian-Bin Yan ${ }^{a}$ and Seik Weng Ng ${ }^{\text {b }}$ *
${ }^{\text {a }}$ College of Science, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
Correspondence e-mail: seikweng@um.edu.my

Received 2 October 2007; accepted 5 October 2007
Key indicators: single-crystal X-ray study; $T=295 \mathrm{~K}$; mean $\sigma(\mathrm{Cl}-\mathrm{O})=0.003 \AA$; disorder in main residue; R factor $=0.021 ; w R$ factor $=0.052$; data-to-parameter ratio $=10.7$.

In the title compound, $\left[\mathrm{Ag}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}\right)\right] \mathrm{ClO}_{4}$, pyrazine ligands bridge two symmetry-related Ag atoms $[\mathrm{Ag}-\mathrm{N}=2.222$ (3) \AA] to form linear polycationic chains which run along the c axis of the orthorhombic unit cell. The Ag^{I} ion has $m 2 m$ site symmetry. The N atoms of the pyrazine ligand lie on a crystallographic mirror plane and each C atom of this ligand possesses crystallographically imposed disorder with two components of equal occupancy. The Cl atom of the perchlorate anion has $m 2 m$ site symmetry and the two unique O atoms of this anion lie on a mirror plane. In addition, in the crystal structure, one-dimensional chains are linked through weak interactions involving perchlorate anions $[\mathrm{Ag} \cdots \mathrm{O}=$ 2.726 (2) \AA] into a motif that can be described as a 4(4).6(2) sheet.

Related literature

For details of the related silver nitrite-pyrazine adduct, see Blake et al. (1999); for the silver hexafluorophosphate-pyrazine adduct, see Carlucci et al. (1995a,b); for the silver tetra-fluoroborate-pyrazine adduct, see Carlucci et al. (1995c); and for the silver nitrate-pyrazine adduct, see Vranka \& Amma (1966).

Experimental

Crystal data

$\left[\mathrm{Ag}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}\right)\right] \mathrm{ClO}_{4}$
$M_{r}=287.41$
Orthorhombic, Cmcm
$a=7.4838$ (2) A
$b=7.1954$ (2) \AA
$c=14.3623(4) \AA$

Data collection

Bruker APEXII area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.489, T_{\text {max }}=0.621$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021 \quad 46$ parameters
$w R\left(F^{2}\right)=0.052$
$S=1.08$
493 reflections
$V=773.39(4) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=2.93 \mathrm{~mm}^{-1}$
$T=295$ (2) K
$0.29 \times 0.23 \times 0.18 \mathrm{~mm}$

2749 measured reflections 493 independent reflections 443 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.023$

Data collection: $A P E X 2$ (Bruker, 2005); cell refinement: $A P E X 2$; data reduction: SAINT (Bruker 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X$S E E D$ (Barbour, 2001) and OLEX (Dolomanov et al., 2003); software used to prepare material for publication: publCIF (Westrip, 2007).

The authors thank Guangdong Medical College, Guangdong Ocean University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2524).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-201.
Blake, A. J., Champness, M. R., Crew, M. \& Parsons, S. (1999). New J. Chem. 23, 13-15.
Bruker (2005). APEX2 (Version 1.22A) and SAINT (Version 7.23A). Bruker AXS Inc., Madison, Wisconsin, USA.
Carlucci, L., Ciani, G., Proserpio, D. M. \& Sironi, A. (1995a). Angew. Chem. Int. Ed. Engl. 34, 1895-1898.
Carlucci, L., Ciani, G., Proserpio, D. M. \& Sironi, A. (1995b). Inorg. Chem. 34, 5698-5700.
Carlucci, L., Ciani, G., Proserpio, D. M. \& Sironi, A. (1995c). J. Am. Chem. Soc. 117, 4562-4569.
Dolomanov, O. V., Blake, A. J., Champness, N. R. \& Schröder, M. (2003). J. Appl. Cryst. 36, 1283-1284.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Vranka, R. G. \& Amma, E. L. (1966). Inorg. Chem. 5, 1020-1025.
Westrip, S. P. (2007). publCIF. In preparation.

supplementary materials

Acta Cryst. (2007). E63, m2701 [doi:10.1107/S1600536807048969]

catena-Poly[[silver(I)- μ-pyrazine- $\left.\kappa^{2} N: N^{\prime}\right]$ perchlorate]

W.-D. Song, C.-S. Gu, J.-B. Yan and S. W. Ng

Comment

Silver salts react with the bidentate pyrazine N-heterocycles to furnish adducts that display a diverse range of architectures. The nitrate adduct consists of a polycationic $\left[\mathrm{Ag}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}\right)\right] \infty$ chain that is surrounded by the nitrate anions, albeit at somewhat long distances (Vranka \& Amma, 1966). In silver nitrite adduct, the anion is much closer to the metal atom, the anion chelating to it (Blake et al., 1999) in the resulting pyrazine-bridged chain. With the hexafluorophosphate counterion, the adduct exists as a chain as the counterion is not Lewis-basic enough to have any coordinating ability. One adduct shows the chain motif in whcih the silver atom shows linear coordination; another is a cocrystal that has both $\left[\operatorname{Ag}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}\right)\right] \infty$ and $\left[\mathrm{Ag}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{5}\right] \infty$ chains (Carlucci et al., 1995a). Another adduct has the silver in a four-coordinate $\mathrm{N}_{4} \mathrm{Ag}$ environment (Carlucci et al., 1995b). The silver tetrafluoroborate adduct exists in two forms. One form has polycationic chains and non-interacting tetrafluoroborate anions; in other polymorphs, the silver atom shows three- and four-coordinate hetero-cycle-linked silver (Carlucci et al., 1995c).

Experimental

Silver perchlorate ($0.207 \mathrm{~g}, 1 \mathrm{mmol}$), pyrazine $(0.08 \mathrm{~g}, 1 \mathrm{mmol})$ and water $(10 \mathrm{ml})$ were sealed in a Teflon-lined stainless-steel autoclave (20 ml capacity). The autoclave was heated 433 K for 3 days. It was then cooled at $5 \mathrm{~K} \mathrm{~h}^{-1}$. Colorless crystals were obtained in about 60% yield based on Ag.

Refinement

The pyrazine molecule is disordered with respect to the carbon atoms, which were refined as four atoms, each of half-site occupancy. The four carbon-bound H atoms were placed at calculated positions ($\mathrm{C}-\mathrm{H} 0.93 \AA$) and were included in the refinement in the riding model approximation, with $U(\mathrm{H})$ set to 1.2 times $U_{\text {eq }}(\mathrm{C})$.

Figures

Fig. 1. Thermal ellipsoid plot of a portion of the chain structure; displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radii.
The weak $\mathrm{Ag} \cdot \mathrm{O}_{\text {perchlorate }}$ interactions are depicted as dashed lines. [Symmetry code: $i=x, y$, $1 / 2-z ; i i=1-x, y, z$.]

supplementary materials

Fig. 2. Layer structure as illustrated by OLEX (Dolomanov et al., 2003).

catena-Poly[[silver(I)- μ-pyrazine- $\left.\kappa^{2} N: N^{\prime}\right]$ perchlorate]

Crystal data

$\left[\mathrm{Ag}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}\right)\right] \mathrm{ClO}_{4}$

$M_{r}=287.41$
Orthorhombic, Cmcm
Hall symbol: -C 2c 2
$a=7.4838$ (2) \AA
$b=7.1954(2) \AA$
$c=14.3623$ (4) \AA
$V=773.39(4) \AA^{3}$
$Z=4$
$F_{000}=552$
$D_{\mathrm{x}}=2.468 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 1486 reflections
$\theta=2.8-27.8^{\circ}$
$\mu=2.93 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block, colorless
$0.29 \times 0.23 \times 0.18 \mathrm{~mm}$

Data collection

Bruker APEXII area-detector
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=295(2) \mathrm{K}$
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.489, T_{\text {max }}=0.621$
2749 measured reflections

493 independent reflections
443 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=27.5^{\circ}$
$\theta_{\text {min }}=2.8^{\circ}$
$h=-8 \rightarrow 9$
$k=-9 \rightarrow 7$
$l=-18 \rightarrow 16$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021$
$w R\left(F^{2}\right)=0.052$
$S=1.08$
493 reflections

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0321 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.46 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.36$ e \AA^{-3}

Extinction correction: SHELXL97 (Sheldrick, 1997), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Ag1	0.5000	$0.05768(4)$	0.2500	$0.0418(2)$	
C11	0.0000	$0.0621(1)$	0.2500	$0.0397(3)$	
O1	$0.1546(3)$	$0.1779(3)$	0.2500	$0.0588(7)$	
O2	0.0000	$-0.0517(4)$	$0.3301(3)$	$0.093(1)$	
N1	0.5000	$0.0229(4)$	$0.40375(18)$	$0.0366(6)$	
C1	$0.6234(7)$	$-0.0790(6)$	$0.4472(3)$	$0.046(1)$	0.50
H1	0.7133	-0.1351	0.4125	0.055^{*}	0.50
C2	$0.6208(7)$	$-0.1030(7)$	$0.5424(3)$	$0.046(1)$	0.50
H2	0.7071	-0.1783	0.5697	0.055^{*}	0.50

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag1	$0.0551(3)$	$0.0518(3)$	$0.0186(2)$	0.000	0.000	0.000
Cl1	$0.0362(6)$	$0.0377(6)$	$0.0452(7)$	0.000	0.000	0.000
O1	$0.036(2)$	$0.056(2)$	$0.084(2)$	$-0.007(1)$	0.000	0.000
O2	$0.085(2)$	$0.096(3)$	$0.097(3)$	0.000	0.000	$0.054(2)$
N1	$0.043(1)$	$0.044(1)$	$0.023(1)$	0.000	0.000	$0.003(1)$
C1	$0.046(3)$	$0.064(3)$	$0.028(2)$	$0.016(2)$	$0.005(2)$	$-0.002(2)$
C2	$0.047(3)$	$0.061(3)$	$0.029(2)$	$0.020(2)$	$0.000(2)$	$0.005(2)$

Geometric parameters ($\AA,{ }^{\circ}$)

Ag1-N1	2.222 (3)	$\mathrm{N} 1-\mathrm{C} 2{ }^{\text {iv }}$	1.322 (5)
Ag1-N $1^{\text {i }}$	2.222 (3)	$\mathrm{N} 1-\mathrm{C} 2{ }^{\text {v }}$	1.322 (5)
$\mathrm{Ag} 1-\mathrm{O} 1$	2.726 (2)	$\mathrm{N} 1-\mathrm{Cl}{ }^{\text {ii }}$	1.334 (5)
$\mathrm{Ag} 1-\mathrm{O} 1^{\mathrm{ii}}$	2.726 (2)	N1-C1	1.334 (5)
$\mathrm{Cl} 1-\mathrm{O} 2{ }^{\text {i }}$	1.412 (3)	C1-C2	1.377 (7)
$\mathrm{Cl} 1-\mathrm{O} 2$	1.412 (3)	$\mathrm{C} 2-\mathrm{N} 1^{\text {v }}$	1.322 (5)
Cl1-O1	1.426 (2)	$\mathrm{C} 1-\mathrm{H} 1$	0.9300
$\mathrm{Cl1}-\mathrm{O} 1^{\text {iii }}$	1.426 (2)	C2-H2	0.9300
$\mathrm{N} 1{ }^{\mathrm{i}}$ - $\mathrm{Ag} 1-\mathrm{N} 1$	167.1 (1)	$\mathrm{C} 2{ }^{\mathrm{v}}-\mathrm{N} 1-\mathrm{C} 1^{\text {ii }}$	59.5 (3)
N1—Ag1-O1	92.05 (2)	$\mathrm{C} 2{ }^{\text {iv }}-\mathrm{N} 1-\mathrm{C} 1$	59.5 (3)
N1—Ag1-O1 $1^{\text {ii }}$	92.05 (2)	$\mathrm{C} 2{ }^{\mathrm{v}}-\mathrm{N} 1-\mathrm{C} 1$	116.0 (3)
N1 ${ }^{\text {i }}$ - $\mathrm{Ag} 1-\mathrm{O} 1$	92.05 (2)	C1 ${ }^{\text {ii }}-\mathrm{N} 1-\mathrm{C} 1$	87.6 (4)
$\mathrm{N} 1{ }^{\text {i }}-\mathrm{Ag} 1-\mathrm{O} 1^{\text {ii }}$	92.05 (2)	$\mathrm{C} 2{ }^{\text {iv }}-\mathrm{N} 1-\mathrm{Ag} 1$	122.2 (2)
$\mathrm{O} 1-\mathrm{Ag} 1-\mathrm{O} 1^{\text {ii }}$	143.0 (1)	$\mathrm{C} 2{ }^{\text {v }}-\mathrm{N} 1-\mathrm{Ag} 1$	122.2 (2)

supplementary materials

$\mathrm{O} 1-\mathrm{Cl1}-\mathrm{O} 1^{\text {iii }}$	108.5 (2)	C1 ${ }^{\text {ii }}$-N1—Ag1	121.8 (2)
$\mathrm{O} 1-\mathrm{Cl} 1-\mathrm{O} 2$	109.8 (1)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Ag} 1$	121.8 (2)
$\mathrm{O} 1-\mathrm{Cl} 1-\mathrm{O} 2{ }^{\text {i }}$	109.8 (1)	N1-C1-C2	121.6 (4)
$\mathrm{O} 1{ }^{\text {iii }}-\mathrm{Cl1}-\mathrm{O} 2$	109.8 (1)	$\mathrm{N} 1{ }^{\mathrm{v}}-\mathrm{C} 2-\mathrm{C} 1$	122.4 (4)
$\mathrm{O} 1{ }^{\text {iii }}-\mathrm{Cl} 1-\mathrm{O} 2{ }^{\text {i }}$	109.8 (1)	N1-C1-H1	119.2
$\mathrm{O} 2-\mathrm{Cl} 1-\mathrm{O} 2{ }^{\mathrm{i}}$	109.1 (3)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	119.2
$\mathrm{Cl} 1-\mathrm{O} 1-\mathrm{Ag} 1$	125.8 (1)	$\mathrm{N} 1^{\mathrm{v}}-\mathrm{C} 2-\mathrm{H} 2$	118.8
$\mathrm{C} 2{ }^{\text {iv }}-\mathrm{N} 1-\mathrm{C} 2{ }^{\text {v }}$	86.3 (5)	C1-C2-H2	118.8
$\mathrm{C} 2{ }^{\text {iv }}-\mathrm{N} 1-\mathrm{C} 1^{\text {ii }}$	116.0 (3)		
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Cl} 1-\mathrm{O} 1-\mathrm{Ag} 1$	-60.0 (2)	$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Ag} 1-\mathrm{N} 1-\mathrm{C} 1^{\mathrm{ii}}$	-54.5 (3)
$\mathrm{O} 2-\mathrm{Cl} 1-\mathrm{O} 1-\mathrm{Ag} 1$	60.0 (2)	$\mathrm{O} 1{ }^{\text {ii }}-\mathrm{Ag} 1-\mathrm{N} 1-\mathrm{C} 1^{\text {ii }}$	-162.9 (3)
$\mathrm{O} 1{ }^{\text {iii }}-\mathrm{Cl} 1-\mathrm{O} 1-\mathrm{Ag} 1$	180.0	O1—Ag1-N1-C1 ${ }^{\text {ii }}$	53.9 (3)
N1 ${ }^{\text {i }}$ - $\mathrm{Ag} 1-\mathrm{Ol}-\mathrm{Cl1}$	83.87 (6)	$\mathrm{N} 1^{\text {i }}-\mathrm{Ag} 1-\mathrm{N} 1-\mathrm{Cl}$	54.5 (3)
$\mathrm{N} 1-\mathrm{Ag} 1-\mathrm{O} 1-\mathrm{Cl1}$	-83.87 (6)	$\mathrm{O} 1{ }^{\text {ii }}-\mathrm{Ag} 1-\mathrm{N} 1-\mathrm{C} 1$	-53.9 (3)
O1i ${ }^{\text {ii }}$ - $\mathrm{Ag} 1-\mathrm{O} 1-\mathrm{Cl1}$	180.0	$\mathrm{O} 1-\mathrm{Ag} 1-\mathrm{N} 1-\mathrm{C} 1$	162.9 (3)
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Ag} 1-\mathrm{N} 1-\mathrm{C} 2^{\text {iv }}$	126.1 (3)	$\mathrm{C} 2{ }^{\text {iv }}-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	70.1 (4)
$\mathrm{O} 1^{\text {ii }}-\mathrm{Ag} 1-\mathrm{N} 1-\mathrm{C} 2{ }^{\text {iv }}$	17.7 (3)	$\mathrm{C} 2{ }^{\mathrm{v}}-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	1.9 (7)
$\mathrm{O} 1-\mathrm{Ag} 1-\mathrm{N} 1-\mathrm{C}^{\text {iv }}$	-125.5 (3)	$\mathrm{C} 1{ }^{\text {ii }}-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	-52.2 (6)
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Ag} 1-\mathrm{N} 1-\mathrm{C} 2^{\mathrm{v}}$	-126.1 (3)	$\mathrm{Ag} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	-178.7 (3)
$\mathrm{O} 1^{\text {ii }}-\mathrm{Ag} 1-\mathrm{N} 1-\mathrm{C}^{\mathrm{v}}$	125.5 (3)	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1^{\text {v }}$	-2.0 (8)
$\mathrm{O} 1-\mathrm{Ag} 1-\mathrm{N} 1-\mathrm{C} 2{ }^{\text {v }}$	-17.7 (3)		

Symmetry codes: (i) $x, y,-z+1 / 2$; (ii) $-x+1, y, z$; (iii) $-x, y, z$; (iv) $x,-y,-z+1$; (v) $-x+1,-y,-z+1$.

Fig. 1

supplementary materials

Fig. 2

